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Abstract ~The general form of the relationships between two symmetric coaxial tensors of second
rank in an isotropic medium is considered. The condition under which the simple tensor linear form
of these relationships. which includes the Lode's angle, can be used is determined. The range of
validity of the proposed relationships is studied by means of Drucker’s stability postulate and the
existence and uniqueness conditions of the generalised solution of the problems. The applications
that are built on the proposed form of the constitutive relationships, that cover creep. plastic, and
elastic behaviour are given briefly.

I. INTRODUCTION

Mechanical behaviour of some homogeneous, isotropic materials is known to depend on
the stress-state type. e.g. tension and compression. The aforementioned dependence was
observed in elastic and elastic—plastic strain range as well as in rates of steady-state creep
and failure characteristics. A description of a variety of appropriate materials may be found
in the papers listed in the references.

In developing the constitutive models suitable for these materials two approaches were
used by workers, mainly in the former Soviet Union. According to Leonov et al. (1966),
Bykov (1971), Panferov (1968), Lomakin (1980) Zolochevskiy (1985), the stress-state type
is defined by means of the first invariant of the stress tensor while the other investigators
(Matchenko and Tolokonnikov, 1968 ; Tolokonnikov, 1968 ; Tsvelodub, 1977; Gorev et
al.. 1979 ; Kadashevich ¢f al.. 1990) have introduced the Lode’s angle, or the third invariant
of the stress tensor. A description of the dependence of the material properties on the stress-
state type based on the first invariant of the stress tensor leads to theories more suitable for
the mechanics of soils. Besides, the constitutive relationships for an incompressible medium
that includes the first invariant of the stress tensor do not satisfy the material stability
postulate (Tsvelodub, 1978). Implementation of these relationships can lead to non-unique-
ness of the solution of the boundary value problems of the theory under consideration.
However, using the Lode’s angle results in the tensor, non-linear constitutive relationships
can be very cumbersome. The choice of which approach should be used depends on the
properties of the material under consideration.

The objective of this paper is to present the conditions under which a simple tensor
linear form of the constitutive relationships, which includes the Lode’s angle, may be used.
It is shown that under some restrictions for the value of the phase of similitude of the
tensor’s deviators a simple form of the constitutive relationships is acceptable. The range
of validity of the proposed relationships is studied by means of Drucker’s stability postulate
and the conditions of the existence and uniqueness of the generalised solution of the
problems. The conditions of proportional loading are determined. The applications, built
on the proposed form of the constitutive relations are given briefly.
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2 A SIMPLE FORM OF THE CONSTITUTIVE RELATIONSHIPS

Consider two symmetric tensors of the second rank «, and h,. in the Cartesian
coordinate system. As follows from the representation theorem the general form of the
relationship between these tensors is

b

dy, = o0~ b4 cab b, (KE=1.2.3)) (h)
where 0, is the unit tensor and ¢; are the scalar coetlicients. Assuming the tensors «,,. by, to
be co-axial. Novozhilov (1961) presented eqn (1) in a form where the coefficients ¢; are
expressed as functions of invariants of the tensors «,, and b,,. Following Tsvelodub (1974)

this relationship can be represented in the form

B "1 (B, cp
ay =34, . ann T —tanom :[ Lo (kl=1.2.3). (2)
Chy, B, chy, Chyy
where ), = a,, — A, .b)y = b, —0,,B, are the tensor deviators: A, = a4, B = ;hkk,

Ay =Caldl)' = By = (Ch,hl)" * are the invariants of the corresponding tensors: o = a— f8
is a phase of similitude of the deviators: % and f§ are the Lode's angles. such that
cos3x = 24, ‘dety), and cos3f = 2B, “deth,: W' = ai /by, is the mixed invariant.

It is easy to show that the tensors with components ¢B,/ch,,, ¢B~/¢h,,. CPich,, are
orthogonal to each other with respect to the suitable scalar product. hence they form a
system of base tensors for a three-dimensional space of the coaxial symmetric tensors of
second rank. The invariants B,. B,. f in eqn (2) can be treated as independent potentials.
In general a single potential function for the tensor ¢, does not exist and the assumption
of existence of the potential function severely limits the class of possible relationships
between tensors ay, and by, Multiplving egn (2) by db,, and contracting we can find the
conditions of existence for a potential function (Tsvelodub, 1974)

L0A, | cnr 1?,4[ ¢ e 1 [VV“_ ¢
= anwmy . B, f = ’B.

3.0 = D - Wt 3
0B, T B, 0B, P B, (W tanw) - (3)

that does not always hold. In particular. the conditions (3) are satisfied if a function ®(B,,
B-. ) exists such that

cP
1 (N(D (‘(D (A/
& = : 1‘1'“ ES ~ : ¢ = — - .
1, 108, J B”FB:" tan o . O 4)
" (8-
Then we can write eqn (2) in the form
(DB, .B.. )
y = = (kI=1.2.3). (5)

Chy,

The relationship (2) follows from the assumption of coaxiallity of two symmetric
second rank tensors. In order to make the relationship between these tensors completely
definite it is necessary 1o specify the functions 4,(B,. B.. f). W'(B,. B.., ) and w(B,, B>.
) which are related to the physical nature of the medium under consideration. Due to the
phenomenological approach the most general form (2) can be simplified by means of valid
assumptions. which are dependent on the nature of the material that falls within the model.
Let us consider in detail the assumption that leads to the tensor linear relationships.

In general. the relationship (1) between two second rank tensors is non-linear. In the
expression (2) ¢ff (b, contains the non-linear term. In applications, only those variants of
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theory that lead to tensor linear relationships are practically used. Consider the general
formulation of a theory of this kind.
Assume the relationships between the components «,, and b, as

Uy = ('“(5/\,:‘}‘(“/7/\/‘. (6)

i.e. tensor ¢, depends linearly on tensor b,,, although, due to the invariant coefficients ¢,
the components by, enter into eqn (6) in a non-linear manner. Referring to eqn (2) this form
of the relationships can be considered as following from the assumption (B, B, ) =0
(similitude assumption). In order to describe the dependence of material properties on
invariant f§ let us specify the relationship (6) as

(ABl y 1 (-B:
+WB,.B.. )

v =234(B,.B..}) . L
e (B B /)</7,”, B. Chy,

(ki =1.2.3). (7

That is, the functions 4,(8,. B.. ) and W' (B,. B-. p) depend on the value f5, and tensor
ay, depends linearly on tensor by,

Let us consider the geometrical interpretation of the reductions, leading from eqns
(2)~(7). In order to simplify the observation. we introduce the assumptions 4,(B,. B..
£) = 0 (incompressibility assumption) and o (8,. B.. ) = w(f). i.e. the phase of similitude
of deviators depends solely on the angle 5. In other words, the invariant x of the tensor «y,
is a function of the corresponding tmvariant f§ of the tensor b, that includes the classical
assumption x = fi. i.c. ox(B,. B.. /) = 0. Following the assumptions, relationship (2) is
reduced to (Tsvelodub, 1974)

I X
ay = HW"Z) = Y=B.expi(f): (f)= —J tan mdf. (8)
!

Z (“h/“/ )

From eqn (8) it follows that it «(B,. B.. ff) = 0. then £ = B.. and hence the tensor linear
relationship (7) is reduced to

o=y DB oy (9)
a B, (b, T

Therefore. the vector ¢, defined by eqn (2) is directed along the normal to the surface
2 = const.. while eqn (7) defines the vector that is directed along the normal to surface
B, = const. Since (1 B-)(CB, ¢hy,) is of the same order as ¢f.¢by,. from eqn (2) it follows
that the condition of proximity of these surfaces is 'tan m(B,. B.. §{} <« 1 where | | denotes
the norm of the function. Note. that in general = # X . since the surface £ = const. defines
the direction of the vector . while the surface X, = const. defines the equal intensity
processes if the function W', is taken as the measure of intensity of the process. Hence, the
particular tensor linear form (7) as well as the general form (2) defines the nonassociated
rule.

Consider from the same point of view the relationships (5). when a potential function
®(B,. B.. f) is assumed to exist. The tensor linear relationship can be deduced from (5) by
using. as before. the assumption ¢(B,. B-, £) = 0 but. by virtue of this assumption. from
eqn (4) it follows that O(B,. B.. /) can not depend on the invariant ff. However, for
prescribed A/ = 1. 2. 3 the functions defined by egns (2) and (7) are asymptotically equal
as »m approaches zero. We can then consider the relationship
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1 ¢ 1 oD
), — — —h, =1,2,3), 10
O+ 3B, 632}71\/, (kl=1,2,3), (10)

where the function ®(B,, B,, ) depends on the invariant 8, as resulting from an approxi-
mation of eqn (5). It is evident that the function ®(8,, B, ), as well as any other function
of the invariant f, is not a potential function for the tensor linear relationship (10). The
condition of proximity for the functions defined by eqns (5) and (10) is Jtanw(B,. B,,
M1l « 1 which implies a restriction for the function w(B,, B», f).

In general. the assumption of the existence of a potential function is not strictly
necessary. however this assumption allows us to formulate the variational theorems that
are useful for developing approximate methods. The non-conventional variational principle,
(Turovtsev, 1988), based on the local potential concept (Glansdorff and Prigogine, 1954)
was proposed as suitable criterion describing the stationary state of the continua defined
by the non-associated rule (2).

The tensor linear form (7) of the general relationship (2) can be used in order to
describe the behaviour of the solids with complex properties, when non-associativeness of
the constitutive rule is acceptable. When the existence of a potential function is assumed or
follows from a reliable physical principle, the relationship (10) can be treated as a reasonably
good approximation for the tensor non-linear relationship (5), as good an approximation
as the value of ||tan w(B,, B,, B)| is small in comparison with unity. This relationship takes
into account the dependence of the material properties of the Lode’s angle and can be easily
used in applications.

3. STABILITY CONDITIONS

In order to completely determine the relationships between the tensors g, and by, it is
necessary to define the functions 4,(B,. B,, ), W°(B,, B,, B) and w(B,, B., ) or only
®(B,. B,. f§). These functions may assume various forms which, can not be completely
arbitrary. More specific formulation can be obtained if one takes into consideration the
Thermodynamics Laws, but thermodynamic relationships are strictly applicable only to
reversible equilibrium processes. For the relationships (2), (7) and (10) there are no potential
functions, therefore. when employing these theories, one may encounter circumstances
in which certain consequences of the theory appear to be contradictory or physically
unacceptable. We, therefore, require a simple criteria which must, as a minimum require-
ment, be satisfied by any theory. The “*quasi-thermodynamic™ Drucker’s postulate of
stability of material under isothermal conditions (Drucker, 1959) will be used for deducing
the restrictions imposed on functions A,(B,, B>, 8), W' (B,, B,, B), w(B,, B,. ) and ®(B,,
B.. p). as well as for deducing the associated properties.

For arbitrarily small increments da,, of the tensor g, and the corresponding increments
oby; of the tensor by, the consequence of Drucker’s stability postulate may be written as

da,oh,, = 0. (1)

Consider this property as characterizing a certain stability of the material without referring
to any mechanical meaning. Apply the inequality (11) in order to obtain the restrictions on
the functions 4,(B,, B.. B), W°(B,, B, B), w(B,. B,, B) and ®(B,, B,, f). Assume that
these functions are differentiable with respect to B,, B, and .

Choosing the coordinate axes to coincide with the principal axes of the tensor by, the
principal values of the tensor may be expressed as

by = /2Bscosf+B,. by=./2B,cos(B+in)+B,. and

by = 2By cos(f+in)+B,,
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with b, = b, = b, 0 < B < /3. Since the tensors «y, and b, are assumed to be coaxial, the
same relations are valid for tensor ¢, and one can obtain

5B, \
{Bf — tanuxi/i’)

¥ 2 Y 2 i3
- W.,<<03-> N f’“j/’)+ o <((5/3):+ 1;““(53255> (12)

B, cos’ m 2

(5““. Oby, = 304,08, +0 VV”(

using eqn (2) (Tsvelodub, 1978). Under the same assumptions we obtain:

5B, 5B,V .
dar Oy = 364,08, +3W" 7 — W“( B—-) + WO B (13)

for the particular form (7) of the tensor linear relationship.

Evaluating the variations § W*, dw, and 84, corresponding to the respective variations
0B,. 6 and 3B, we can reduce eqns (12) and (13) to quadratic forms in the variables 65,,
off and 4B,. Then from eqn (11) it follows that these quadratic forms must be non-negative.

For the case when the principal axes of the tensor A, do not coincide with the coordinate
axes the quadratic form (12), as well as (13), is reduced to two quadratic forms: one is
associated with the variations 3 B., df, and 3B, as above, and the other is associated with
rotation of the principal axes of the tensor 4,,. It can be shown (Tsvelodub, 1978) that the
quadratic form associated with rotation of the principle axes through any point in an
isotropic medium is non-negative definite. Hence, for the class of stable isotropic material,
when the tensor a,, depends linearly on the tensor b,,. we obtain

(j(lA'I(SbA/' = XN = Os (]4)

where x| = B, x; = . v; = B, and ¢, are the elements of the symmetric matrix :

L owr W o o,
g, =- — - — — sy = WY, v =3,
a5 B, (B- B: AN UER B,
1 cwe 1 cw N 3 (A, 304, 15)
o= LI AT et B e N
2= op, cp° T2, B, T20B, T 20 (

The equality sign in eqn (14) holds only if dh,, = 0, (k/ = 1,2, 3). Hence, we may employ
the test for positive definiteness of the matrix [¢,] :

¢ > 0. g4 —qia > 0. det[q,] > 0. (16)

From eqn (16) one can obtain restrictions on the functions 4,(B,. B~, f). W'(B,, B>. ),
and w(B,. B-. §). and on the derivatives of these functions.

In the case when the tensor linear relationship (10) is defined by a single function
®(B,. B,, ) one can obtain restrictions on ® and on derivatives of ® by using the conditions
(16). Substituting (4) into (15) we obtain the matrix [¢,] whose coefficients are in the form

oD 5 o0 PR )
Gi=_ . =B go=— .
s T e 1 g
I o BRI | 2 .
G\ = | o A= I, A . 23 = s
1= 0pep 9T B B 1 T 20808, a7

The conditions (16)., with coeflicients detined by (15) and (17), are necessary and
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sufficient for eqn (11). Consequences of the postulate (11) have far-reaching implications
in the theory developed as well as in the general case of relationship (2). The uniqueness of
the solution can be deduced from these conditions (Tsvelodub. 1978). as well as the structure
of the constitutive relationships of the theory.

Consider a stable medium when the relationship between the tensors «,,. b, has the
form (7) or (10). Note that assuming 4,(8,. B-. /) = 0, from (4) it follows that the function
®(B,. B., ) can not depend on the invariant B,. although in the general case of relationship
(7) the function W'(B,. B-.}) still depends on B,. Following Tsvelodub (1978), we can
deduce from conditions (16) that, owing to the stable medium described by the tensor linear
relationship (7) was incompressible (A4, = 0) it is necessary and sufficient that the function
W*(B,. B.. §) does not depend on invariant B,.

Necessitv. Let a medium be stable and incompressible (4, = 0). Then all the principal
minors of matrix [¢,] with coetlicients (15) are non-negative. in particular

AN
dir Y

qrr s
10 {3z

> 0.

\
<

(18)

Since ¢y = 0 by virtue of eqn (15). from (18) it follows that ¢-; = ¢;: = 0. Thus. with
reference to (15) we obtain CH™" 7B, = 0.

Sufficiency. Let the medium be stable and the functions 4,, W', and o are not dependent
on the invariant B,, then ¢W" ¢B, = ¢w ¢B, = ¢A4,/(B, = 0. Hence ¢;; = 0 by virtue of
eqn (15). and. as carlier. from egn (18) it follows that ¢, = ¢:; = 0. Referring again to eqn
(15) we can deduce that ¢4, (B, =4, (B. =4, ¢ =0.i.e. A, = const.. namely (Tsvel-
odub. 1978) 4,(B,. B.. 5} = 0. Hence. the constitutive relation for an incompressible med-
ium described by relationship (7) is " = W(B.. fi).

The stability conditions (15) and (16) can be simplified for an incompressible medium
as

R B. W' 1 cwe i
a>1. u='h">1. u= (ﬂ oh=— = (19)
4 ”"(' ¢ BZ W'!(l (/;

Therefore. the constitutive relations for an incompressible medium (4, = 0) that
includes the invariant B, do not satisty stability postulate (11). Implementation of these
relations leads 1o non-uniqueness of the solution of the boundary value problems of the
theory under consideration (Tsvelodub, 1978).

The conditions obtained define the class of stable materials whose behaviour can be
described by the tensor linear relationships (7) and (10) and ensure uniqueness of the
solution in dynamic as well as static problems.

4. CONDITIONS FOR PROPORTIONAL LOADING

In developing a deformation type theory of plasticity there is an important type of
loading under which all the components of the tensor deviator are varied in proportion to
one and the same parameter. This proportional loading is comparatively easy to achieve
experimentally. Therefore, the laws of a theory of plasticity can be checked under these
conditions.

Consider. following II'yushin (1948). the conditions under which proportional loading
can be maintained in a stable medium described by the tensor linear relationships (7) and
(10). Assume that: (1) all the components of the tensor «,, vary proportionally to the
paramcter 1e(0. 2 ). e, ay = taf (1) b, = x(1)hF. where (1) 1s an unknown function of
the parameter ¢ and «f. bf. satisfies the equilibrium equations, the boundary conditions
and compaltibility conditions. Then tensors «,,. b,.. as well as ¢f. and h¥. will be the solution
of the equilibrium boundary value vroblem and only the constitutive equations must be
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satisfied. As was shown for an incompressible stable medium. the constitutive relationship
is given by W’ = BW°(B.. ). and by the use of relationship (7) we can obtain for this case

! gl
A, = 5. WYB,.p). (20)

Assume W'(B..f) to be a homogeneous function of degree n+1 in the components of
tensor by, : W° = f(B)B%"'. where f(f) is a function solely of angle 8. Since angle f is a
constant during proportional loading. by using the relations 4, = r4%, and B, = y(1)B%
we can deduce that eqn (20) is satisfied if function x(7) is of the following form:
% (1) = "= Therefore. the sufficient condition for proportional loading of a stable,
incompressible medium (7) during proportional change in the tensor a,, components is the
following relationship

A =By 21

Note that condition (21) is only sufficient.

S, UNIQUENESS OF THE SOLUTION

As mentioned earlier, the material stability conditions (16) and (19) are sufficient for
uniqueness of the solution. In Chircov (1988). conditions for existence and uniqueness of
the generalised solution, in the sense of the theory of distributions. were obtained. A form
of the relationship between the second invariants of the deviators of the tensors ¢, and by,
the same as eqn (21). i.e. corresponding to the tensor linear relationship (7) was used.
Although in Chircov (1988). the generalized formulation of the problem was used the
existence and unigueness conditions obtained turned out to be similar to the conditions
(16).

As shown in Chircov (1988). if the deviators of the tensors «a,, and by, are proportional
and coaxial, then a necessary and sufficient condition for the existence and uniqueness of
the generalized solution of the problems is

> (0. (22)

where a (b, u,) and b. are the intensities of the tensors «;, and b,,. respectively, and g, is the
Lode parameter of the tensor b,,. Clearly. the assumption of proportionality of the tensor
deviators af, and b, used in Chircov (1988) bound the admissible form of relationships
a = a(b, u,) by the tensor linear form of relationships (7) and (10).

By using the known relationships

a= A h= 2B = — dtan(p), (23)

we can represent the necessary and sufficient condition (22) as follows:

A .
) <8 (24)

cp "B

Substituting (20) into (24) we obtain the desired restriction on function W'(B,, f)
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CW cW
RS AU 25
of ~ OB, (23)
Consider. In particular. the case of B = ()B4 ' Then, from eqn (25) it follows that

[/7 11 < n. The stability conditions (19) lead to 1 /7 [ < 2/ n. Hence, it n = 4. the stability
conditions hold. as well as the condition for existence and uniqueness of the generalized
solution of the problems. If 17 < 4. then the stability conditions are broken, while the
condition for existence and uniqueness of the generalized solution of the problems is held.

In Chircov (1988). by means of inequality (22) and the additional assumptions, it was
proven that the convergence of the iterational method of the elastic solutions and the rate
of convergence was estimated. Therefore. the condition (25) is a useful additional restriction
in developing the constitutive relationships ol the proposed theory.

6. APPLICATIONS

The particular forms of the relationships (7) and (10) studied here have already been
presented in the hiterature. These models cover steady-state creep. plastic, and elastic
behaviour.

The constitutive equations of steady-state ¢reep for materials with different properties
in tension and compression were developed by Rabotnov (1969), Gorev et al. (1979),
and Tsvelodub (1974). in order to model the creep of light weight alloys. It was found
experimentally that the creep rate depends on the type of stress state. Materials are incom-
pressible and creep curves are similar for various types of the stress state. Besides, a
negligible difference was observed between the surfaces W'(Bs. f) = const. under various
values of the angle . Tsvelodub. (1974) assumed that W' = ¢, (B.f(f))'*' and
1) =1 —cosin” 34)' °. A non-associative flow rule was proposed

. 1 (B-
o= WUNBLP) - (k= 1.2.3). (26)

B: [y
where H"(B.. ) = &0, is the dissipation function in creep, &, is the deviator of the creep
rate of deformation tensor. oy, is the stress tensor deviator. Using the stability condition
(1D the estimation —' < ¢» <, was obtained for the associated flow rule, while for the

non-associated rule — 1 < ¢- < 20y 2—1). Thus. the associated flow rule is restricted to a
more lmited class ol materials. The computations carried out by using the tensor linear
relations (20) proved 1o be in close agreement with the experimental results. The com-
putational advantages of the proposed flow rule are evident. This model has been fully
described by Tsvelodub (1974). and here a brief summary of the formulation is given.

It 15 well established in the literature that the plastic behaviour of some materials
depends on Lode's angle. In order to describe the observed behaviour various forms of
vield functions have been proposed. so that dependence on Lode’s angle is included. If an
isotropic material does not exhibit a significant degree of plastic dilation. then the general
form of the vield function is

Yty = flp)t—rt.. 27

where 1= (La's")' " is the octahedral shear stress. 7. is the octahedral vield stress, ¢ is the
angle. related to Lode's parameter g by eqn (23). and f{¢) is the function which governs
the shape of the vield surface in the octahedral plane. Various forms of the f{¢) function
were proposed. A typical form is f(¢) = (1 — ¢ cos 3¢)”, where the exponent x has been taken
at various vatues from | 3 to . and ¢ is @ parameter that is to be determined. In Tolo-
konnikov (1968) and Kadashevich and Pomytkin (1990) more complex continuous approxi-
mations of f{w) were considered. while in Danshin (1988), the piece-wise continuous forms
were studied.
Assoctated with a yvield function (27), the tlow rule
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dit, —di = m‘.(‘ﬁ'z Loy 2@
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)~ (kl=1,2,3)
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would be very cumbersome to use since ‘g, (g, contains the tensor nonlinear term. Let us
apply the above proposed analysis in order to simplify the plastic flow rule associated with
vield function (27). Assume that tensors def, and g}, are coaxial, and o = w(y), then the
general form of the relationships between def, and o) is

WNE) oS
d, = LBy, (28)

where ¢ W' = ¢, def, is the plastic dissipation, & = [(¢)t is the plastic potential function,
and X is some equivalent stress. Let us associate this equivalent stress with the yield function
(27). that is. assume £ = /(). In general T # X, hence (28) defines a nonassociative flow
rule. and in order to remove the dependence of the plastic potential £ on the angle ¢ let us
define the plastic potential as £ = 1. The surface £ = const. is then the von Mises cylinder
with a circular yield locus. The yield function (27) is used as before and we obtain from
(28) the nonassociative flow rule

(T
diyy = T o0 G ki=1.2,3), (29)

RY

which is similar 1o the Levy-Mises relationships but d4 is a scalar factor that depends on
the Lode’s angle. By means of the model (27) and (29) it is possible to describe the different
behaviour of a material in tension and compression in the plastic range of deformation.
Under conditions (19) the constitutive relations (29) satisfy the stability postulate (14),
incompressibility assumption. and are presented in a simple form. Various strain-hardening
rules can be incorporated into the model in the usual way.

A similar approach to the development of constitutive relations was used by Reed and
Cassie (1988). The Mohr--Coulomb yield criterion with the nonassociative flow rule pro-
vides a simple and useful model for geotechnical materials.

Many theories have been proposed in order to describe the elastic behaviour of
materials with different properties in tension and compression. Among others we refer to
the studies developed by Matchenko and Tolokonnikov (1968). Tolokonnikov (1968).
Sarkisian (1971), Tsvelodub (1977) and Turovtsev (1981). where the parameter { = cos 3
was used as the characteristic of the type of the stress state. Developing the theory proposed
by Matchenko and Tolokonnikov (1968), Tsvelodub (1977) gives the following expression
for the elastic potential function

O(B,.B..0) =D (B)+D:( f(Og(B.)) = ¢ (sign B, )Bi +¢2(0)g(B-) (30)

where ¢, (sign B,). ¢-(J). and g(B-) are the material functions, and B,, B>, and { = cos 3f
are the corresponding invariants of the stress tensor. The prospect of finding partial
derivatives of this function with respect to the stresses is a daunting one and the complexity
of resulting relations seems unwarranted when we recall that a potential function (30) was
proposed so that the depcndence of the elastic constants ¢, and ¢, on the type of the stress
state is included. Consider the alternative approach based on the approximate relationships
(10). Let us assume for simplicity that

]
c(signB )y =0, ¢g(B.)= - -B3". (3D)
n+1

Then. by using (10) we obtain stress strain relations in the form
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gy = C(OBY el (kl=1.2.3) (32)

which combines computational simplicity in implementation with the possibility of descri-
bing the dependence of elastic propertics on the type of stress state.

Substituting (31) into (30) we can obtain by means of (4), the condition of proximity
of the tensor linear relationship (32) with the corresponding non-linear one in the form

s, 12

SN
(”*\I)('j(g)

tan | =

from which 1t follows that
| l(i.:‘<< ':(/1+l). (33)

For the simple case a valid approximation of the function ¢-(J) 18 ¢»() = aexp(c(). where
a and ¢ are the material constants. Using this assumption in eqn (29) we deduce that the
tensor linear relation (32) may be considercd as an admissible approximation if
le] « L(n+ 1). It is easy to show that under this restriction the stability conditions (16) are
fulfilled.

Thus. the proposed stress strain rule (32) provides a simple and general model for the
materials with stress-state type dependent properties.

7. CONCLUSIONS

The general form of the relationships between two coaxial symmetric tensors of the
second order in an isotropic medium was studied. It has been shown that the particular
tensor linear form of these relations can be used in order to describe the behaviour of solids
with complex properties under some restriction for the value of the phase of similitude of
the tensor’s deviators. These relations should be considered as approximate when the
associativeness of the flow rule is assumed or it follows from a reliable physical principle.

Conditions of materia! stability were obtained which ensure uniqueness of the solution
in dynamic as well as static problems of the theory under consideration. These conditions
have been compared with restrictions on the material functions. which follow from the
conditions for existence and uniqueness of the generalised solution of the problems. The
proposed constitutive relationships are shown to be in agreement with these restrictions.

Implementation of the tensor linear relations has been demonstrated on various consti-
tutive models for stress-state type sensitive materials. These models cover steady-state creep,
plastic, and elastic behaviour. and demonsirate the flexibility and simplicity of the approach.
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